Главная Рефераты по авиации и космонавтике Рефераты по административному праву Рефераты по безопасности жизнедеятельности Рефераты по арбитражному процессу Рефераты по архитектуре Рефераты по астрономии Рефераты по банковскому делу Рефераты по сексологии Рефераты по информатике программированию Рефераты по биологии Рефераты по экономике Рефераты по москвоведению Рефераты по экологии Краткое содержание произведений Рефераты по физкультуре и спорту Топики по английскому языку Рефераты по математике Рефераты по музыке Остальные рефераты Рефераты по биржевому делу Рефераты по ботанике и сельскому хозяйству Рефераты по бухгалтерскому учету и аудиту Рефераты по валютным отношениям Рефераты по ветеринарии Рефераты для военной кафедры Рефераты по географии Рефераты по геодезии Рефераты по геологии Рефераты по геополитике Рефераты по государству и праву Рефераты по гражданскому праву и процессу Рефераты по кредитованию Рефераты по естествознанию Рефераты по истории техники Рефераты по журналистике Рефераты по зоологии Рефераты по инвестициям Рефераты по информатике Исторические личности Рефераты по кибернетике Рефераты по коммуникации и связи Рефераты по косметологии Рефераты по криминалистике Рефераты по криминологии Рефераты по науке и технике Рефераты по кулинарии Рефераты по культурологии Рефераты по авиации и космонавтике Рефераты по административному праву Рефераты по безопасности жизнедеятельности Рефераты по арбитражному процессу Рефераты по архитектуре Рефераты по астрономии Рефераты по банковскому делу Рефераты по сексологии Рефераты по информатике программированию Рефераты по биологии Рефераты по экономике Рефераты по москвоведению Рефераты по экологии Краткое содержание произведений Рефераты по физкультуре и спорту Топики по английскому языку Рефераты по математике Рефераты по музыке Остальные рефераты Рефераты по биржевому делу Рефераты по ботанике и сельскому хозяйству Рефераты по бухгалтерскому учету и аудиту Рефераты по валютным отношениям Рефераты по ветеринарии Рефераты для военной кафедры Рефераты по географии Рефераты по геодезии Рефераты по геологии Рефераты по геополитике Рефераты по государству и праву Рефераты по гражданскому праву и процессу Рефераты по кредитованию Рефераты по естествознанию Рефераты по истории техники Рефераты по журналистике Рефераты по зоологии Рефераты по инвестициям Рефераты по информатике Исторические личности Рефераты по кибернетике Рефераты по коммуникации и связи Рефераты по косметологии Рефераты по криминалистике Рефераты по криминологии Рефераты по науке и технике Рефераты по кулинарии Рефераты по культурологии |
Курсовая работа: Сигналы и процессы в радиотехнике (СиПРТ)Курсовая работа: Сигналы и процессы в радиотехнике (СиПРТ)Министерство образования и науки Украины Севастопольский национальный технический университет КУРСОВАЯ РАБОТА по дисциплине «Сигналы и процессы в радиотехнике» Выполнил студент: Гармаш М. А. Группа: Р-33 д Номер зачётной книжки: 212467 Допущен к защите Защищен с оценкой Руководитель работы __________________ Агафонцева О. И. __________________ « »__________ 2003 г. « »________ 2003 г. Севастополь 2003 Содержание 1 ЗАДАНИЕ 2 ЗАДАНИЕ 3 ЗАДАНИЕ 4 ЗАДАНИЕ 5 ЗАДАНИЕ 6 ЗАДАНИЕ 7 ЗАДАНИЕ ПЕРЕЧЕНЬ ССЫЛОК Задание 1 Условие: На безынерционный нелинейный элемент, ВАХ которого аппроксимирована кусочно - ломаной линией с крутизной линейного участка и напряжением отсечки подано напряжение . Требуется: 1. Составить уравнение ВАХ нелинейного элемента. 2. Рассчитать и построить спектр выходного тока вплоть до десятой гармоники. Построить временные диаграммы входного напряжения, тока, протекающего через элемент и его первых четырёх гармоник. 3. Определить углы отсечки и напряжения смещения , при которых в спектре тока отсутствует: а) вторая гармоника; б) третья гармоника. 4. Найти угол отсечки и напряжение смещения , соответствующие максимуму амплитуды третьей гармоники для случая, когда . 5. Построить колебательную характеристику и описать её особенности. Найти напряжение смещения , соответствующее ее линейности. Исходные данные приведены ниже: S=45ма/А; U1=-3 В; U0=-2 В; Um =2 В. Решение: 1. Воспользовавшись [1] составим уравнение ВАХ нелинейного элемента , которое определяется по формуле (1.1) Импульсы выходного тока можно рассчитать по формуле: (1.2) График изображен на рисунке 1.1 Рисунок 1.1 - а) График ВАХ уравнения нелинейного элемента. б) График выходного тока . в) График входного напряжения. 2. Рассчитаем спектр выходного тока. Известно, что спектр тока рассчитывается по формуле: , (1.3) где - амплитуда -ой гармоники тока; - амплитуда импульсов тока; n- номер гармоники (n=0,1,…,10); - коэффициенты Берга, Q-угол отсечки, определяемый по формуле: . (1.3) Подставив численные значения находим Q=2.094. Строим спектрограмму выходного тока используя [3]. Спектр показан на рисунке 1.2 (1.4) (1.6) (1.5) Рисунок 1.2 – Спектрограмма выходного тока Теперь построим графики первых четырёх гармоник при помощи [3]: Рисунок 1.3 - графики первых четырёх гармоник 3. Определим угол отсечки и смещение, при котором в спектре тока отсутствует n-я гармоника, что в соответствии с (1.3), можно определить путём решения уравнения : . (1.7) Результат показан ниже : для 2 гармоники Q1 = 0, Q2 = 180; для 3 гармоники Q = 0, Q2 = 90, Q = 180; Проведём суммирование гармоник: Рисунок 1.4 - сумма первых десяти гармоник 4. Угол отсечки, соответствующий максимуму n-ой гармоники в спектре тока (при ) определяется по формуле: (1.8) Угол отсечки равен 60. Определим соответствующее напряжение смещения U0 из формулы(1.3).В итоге получим : Подставляя численные значения получим U0= - 2В. 5. Колебательная характеристика нелинейного элемента определяется зависимостью амплитуды первой гармоники тока , протекающего через нелинейный элемент, от амплитуды входного напряжения: . Поскольку >U1, то вид характеристики определяется по формуле: . (1.9) где- средняя крутизна, определяемая cоотношением: : . (1.10)
Колебательная характеристика изображена на рисунке 1.5:
Рисунок 1.5 – Колебательная характеристика
Задание 2 Условие: На вход резонансного умножителя частоты, выполненного на полевом транзисторе (рисунок 2) подано напряжение , где - частота сигнала. Нагрузкой умножителя является колебательный контур с резонансной частотой , ёмкостью и добротностью . Коэффициент включения катушки -. Сток - затворная характеристика транзистора задана в виде таблицы 3 и может быть аппроксимирована в окрестности полиномом: . Таблица 1 - Характеристика транзистора к заданию 2
Требуется: 1. Построить ВАХ полевого транзистора. Изобразить временные диаграммы входного напряжения, тока стока и выходного напряжения умножителя. 2. Определить коэффициенты аппроксимирующего полинома . 3. Рассчитать спектр тока стока и спектр выходного напряжения умножителя. Построить соответствующие спектрограммы и найти коэффициент нелинейных искажений выходного напряжения. 4. Рассчитать нормированную АЧХ контура, построить её в том же частотном масштабе, что и спектрограммы, расположив их друг под другом. 5. Рассчитать индуктивность и полосу пропускания контура. Исходные данные : U0= -3,5 B, Um=3 B, f1=2 МГц C=120 пФ, P=0,2
Рисунок 2.1 - Схема удвоителя частоты. Решение: 1. По значениям, приведенным в таблице 3, построим ВАХ полевого транзистора. Изобразим временные диаграммы входного напряжения: U(t)=U0+Um*cos(wt) (2.1) Рисунок 2.2 - а) сток-затворная характеристика транзистора. б) ток стока. в) входное напряжение транзистора.
2. Коэффициенты определим, используя метод узловых точек. Выберем три точки (Напряжения соответственно равные ), в которых аппроксимирующий полином совпадает с заданной характеристикой: u 1 = - 3,5В u 2= -0,5В u3=--7,5В Затем, подставляя в полином значения тока, взятые из таблицы 3 и напряжения, соответствующие этим точкам, получают три уравнения. (2.2) Решая систему уравнений (2.2), используя [3], с помощью процедуры Given-Minerr , определим искомые коэффициенты полинома : a0= 8,25 мА ; a1= 2,2 мА/В a2= 0,26 мА/В2 Проведем расчёт аппроксимирующей характеристики в рабочем диапазоне напряжений по формуле: (2.3) 3. Спектр тока стока рассчитаем с использованием метода кратного аргумента [2] . Для этого входное напряжение подставим в аппроксимирующий полином и приведем результат к виду: , (2.4) где - постоянная составляющая; - амплитуды первой и второй гармоник соответственно;.После подстановки входного напряжения в полином, получим: (2.5) (2.6) (2.7) Подставляя числовые значения коэффициентов a0, a1, a3 и амплитудное значение входного сигнала Um, получим : I0= 9.45 I1=6.6 I2=1.2 Изобразим спектр тока стока на рисунке 2.4, используя [3]: Рисунок 2.3 – Спектр тока стока Рассчитаем cпектр выходного напряжения, которое создаётся током (2.4).Он будет содержать постоянную составляющую и две гармоники с амплитудами и начальными фазами и , (2.8) где - определим по формулам: ; (2.9) ; (2.10) , (2.11) где - напряжение источника питания; - сопротивление катушки индуктивности; - характеристическое сопротивление контура; - резонансная частота; - номер гармоники (). Подставив числовые значения для f1, Ec=12, I0, Q, C, r и рассчитав промежуточные значения: r= 331,573 Ом , r = 5,526 Ом; R0 = 19890 Oм; Fр =4МГц; рассчитаем спектр выходного напряжения с помощью [3]: U0 =11,99 В, U1 = 0.058 В , U2= 0.955 В. Изобразим спектр амплитуд и фаз выходного напряжения на рисунке 2.5: Рисунок 2.4 – Спектр амплитуд и фаз выходного напряжения Определим коэффициент нелинейных искажений выходного напряжения по следующей формуле: 4. Найдем- нормированную амплитудно-частотную характеристику контура, которую рассчитаем по формуле: (2.12) Изобразим нормированную амплитудно-частотную и фазо-частотную характеристики контура на рисунке 2.6, используя [3]: Рисунок 2.5 - Амплитудно-частотная и фазо-частотная характеристики контура 5. Используя формулу [1] для индуктивности контура: L=r/2*p*fp, (2.13) найдём индуктивность контура L= 520.8 мкГн. Графическим способом на уровне 0.707 определяем полосу пропускания, которая равна Df= 1,3105 кГц. Задание 3 Условие: На вход амплитудного детектора вещательного приёмника, содержащего диод с внутренним сопротивлением в открытом состоянии и - фильтр, подаётся амплитудно-модулированный сигнал и узкополосный шум с равномерным энергетическим спектром в полосе частот, равной полосе пропускания тракта промежуточной частоты приёмника и дисперсией . Требуется: 1. Привести схему детектора и определить ёмкость фильтра нижних частот. 2. Рассчитать дисперсию входного шума и амплитуду несущего колебания . 3. Определить отношение сигнал/помеха на входе и выходе детектора (по мощности) в отсутствии модуляции. 4. Рассчитать постоянную составляющую и амплитуду переменной составляющей выходного сигнала. 5. Построить на одном рисунке ВАХ диода, полагая напряжение отсечки равным нулю, а также временные диаграммы выходного напряжения, тока диода и напряжения на диоде. Исходные данные приведены ниже: R1=20 Ом ; R=10 кОм ; M=30% ; W0=4.6 Решение: 1. На рис.3.1 изобразим схему
детектора:
Рисунок 3.1 - Схема детектора. Постоянную времени фильтра детектора выберем из условия , (3.1) где - частота несущего колебания; - максимальная частота в спектре модулирующего сигнала. Для того чтобы удовлетворить условию (3.1) следует выберем как среднее геометрическое . (3.2) где кГц (промежуточная частота), кГц. Рассчитав по формуле (3.2),находим, что =4 мкс .Далее определим ёмкость фильтра по формуле: . (3.3) Расчет производим в [M] и находим ,что C= 0,4 нФ. 2. Дисперсию входного шума определяют по формуле , (3.4) где - энергетический спектр шума. Интегрировать будем ,по условию задачи, в полосе частот . , поскольку спектр шума равномерен, а за пределами этой полосы – равен нулю. Определим дисперсию входного шума по формуле (3.4) с помощью [3]: Dx=0.125 В2. Вычислим амплитуду несущего колебания в соответствии с задачей по формуле : . (3.5) Подставив исходные значения получим: =3.537 В. 3. Определяем отношение сигнал/помеха на входе (по мощности) детектора : . (3.6) Подставив исходные значения получим:: h=50 Определяем отношение сигнал/помеха на выходе детектора по формуле : , (3.7) где - среднеквадратическое отклонение входного шума; - постоянная составляющая выходного напряжения детектора при одновременном воздействии сигнала (несущей) и шума. Сначала находим СКО=0.354 В. Далее определяем постоянную составляющую формуле , (3.8) где -функции Бесселя нулевого и первого порядков (модифицированные) соответственно. Производим вычисления с помощью [3] находим =3,555 В. Подставляем полученные значения , СКО находим, что сигнал/помеха на выходе равен: 4. Напряжение на выходе детектора в отсутствии шума прямопропорционально амплитуде входного сигнала , (3.9) где - коэффициент преобразования детектора, который определяется по формуле: . (3.10) где Q-угол отсечки. Угол отсечки тока определим решением трансцендентного уравнения: . (3.11) Решение уравнения (3.11) произведем в [3].Решив (3.11) находим Q=21.83, а К0=0.928. Раскрыв скобки в выражении (3.9), приведём выражение для выходного сигнала к виду , (3.12) где: - постоянная составляющая выходного сигнала; - амплитуда выходного сигнала. Подставив значения, получим:
Построим сигнал на выходе детектора: . (3.13) Рисунок 3.2 - График сигнала на выходе детектора. Изобразим ВАХ диода, а также временные диаграммы тока диода и напряжения на диоде: Рисунок 3.3 – График ВАХ диода, временные диаграммы тока диода и напряжения на диоде Задание №4 Генератор на полевом транзисторе с контуром в цепи стока генерирует гармоническое колебание с частотой . Контур состоит из индуктивности L, емкость C и имеет добротность Q. Крутизна сток-затворной характеристики транзистора в рабочей точке S. Условие: 1. Изобразить электрическую схему генератора. Записать дифференциальное уравнение и вывести условие самовозбуждения генератора. 2. Определить критические коэффициенты включения . 3. Выбрать значение P, обеспечивающее устойчивую генерацию и рассчитать неизвестный элемент контура. 4. Изобразить качественно процесс установления колебаний в генераторе, указать области нестационарного и стационарного режимов. Исходные данные: Индуктивная трехточечная схема;
Решение: 1. Представим принципиальную схему индуктивного трехточечного автогенератора [2]: Рисунок 4.1 – Автогенератор, собранный по индуктивной трехточечной схеме. Для составления дифференциального уравнения генератора рассмотрим колебательный контур подробнее, при этом как бы разорвав обратную связь (рисунок 4.2). Рисунок 4.2 – Колебательный контур автогенератора. В схеме на рисунке 4.2 R – сопротивление потерь контура. По законам Кирхгофа и, используя компонентные уравнения элементов запишем систему характеристических уравнений [6] цепи представленной на рисунке 4.2. . (4.1) Для решения системы (4.1) не хватает еще одного уравнения. Его мы возьмем воспользовавшись характеристиками транзистора: . (4.2) Теперь проведя необходимые подстановки запишем уравнение с одним неизвестным током i. . (4.3) Чтобы избавиться от интеграла продифференцируем уравнение (4.3) по времени. . (4.4) Обозначим коэффициенты при неизвестном и его производных, как и соответственно при дифференциалах 0-ого, 1-ого, 2-ого и 3-его порядков. Тогда (4.4) примет вид: . (4.5) Для определения условия самовозбуждения воспользуемся критерием устойчивости Рауса-Гурвица [2]. В соответствии с этим критерием, для самовозбуждения необходимо и достаточно чтобы выполнялось: 1) ; (4.6) 2) . (4.7) Подставляя значения коэффициентов , получим условие самовозбуждения автогенератора. . (4.8) 2. Определим критические коэффициенты включения индуктивности. Для этого проведем в (4.8) некоторые преобразования. Поскольку индуктивность не отрицательна и не равна 0, то разделим (4.8) на нее. . (4.9) Введем величину коэффициента включения индуктивности р: . (4.10) Где - полная индуктивность контура. (4.11) Исходя из (4.10) и (4.11) можно записать: . (4.12) Подставим (4.12) в (4.9). . (4.13) Как известно - характеристическое сопротивление контура. Т.о. неравенство (4.13) примет вид: . (4.14) Разделив (4.14) на получим: , (4.15) но это есть добротность контура Q. . (4.16) Теперь если учесть, что (4.15), а затем умножить неравенство на , получим окончательное уравнение для вычисления критических коэффициентов включения. . (4.17) Используя [3] определим критический коэффициент включения индуктивности: 3. Рассчитаем неизвестный элемент контура (в нашем случае это индуктивность) по следующей формуле: (4.18) Подставив исходные данные, получим: Определим коэффициент усиления усилителя: Найдём значения индуктивностей L1 и L2 при помощи [3], используя операцию Given: 4. Представим качественный график процесса установления колебаний в автогенераторе (рисунок 4.3): Рисунок 4.3 – Процесс установления автоколебаний: 1. Нестационарный режим – режим, при котором параметры колебания меняются. 2. Стационарный режим – режим, при котором параметры колебания не меняются. Задание №5. Условие: Аналоговый сигнал S(t) (рисунок 5.1) длительностью подвергнут дискретизации путем умножения на последовательность - импульсов. Интервал дискретизации Т. Требуется: 1. Рассчитать спектр аналогового сигнала S(t) и построить график модуля спектральной плотности. 2. Определить максимальную частоту в спектре аналогового сигнала , ограничив спектр, использовав один из критериев. 3. Рассчитать интервал дискретизации Т и количество выборок N. Изобразить дискретный сигнал под аналоговым в том же временном масштабе. 4. Определить спектральную плотность дискретного сигнала и построить график модуля под графиком спектра аналогового сигнала и в том же частотном масштабе. 5. Провести дискретное преобразование Фурье (ДПФ), определить коэффициенты ДПФ и построить спектрограмму модуля этих коэффициентов под графиками спектров аналогового и дискретного сигналов и в том же частотном масштабе. Записать выражение для Z - преобразования дискретного сигнала. Решение:
Рисунок 5.1 – график исходного сигнала 1.Рассчитаем спектр аналогового сигнала S(t), данный сигнал представляет собой ни четную ни нечетную функцию. Зададим сигнал S(t) аналитически: (5.1) Спектральная плотность рассчитывается путем прямого преобразования Фурье [7]: . (5.2) где (5.3)
Где и весовые коэффициенты. Подставляя значения с помощью [3] построим график спектральной плотности (рисунок 5.2).
Рисунок 5.2 – график модуля спектральной плотности 2. Определим максимальную частоту в спектре аналогового сигнала по уровню 0,1. (5.4) . (5.5) 3. Условие выбора интервала дискретизации возьмем из теоремы Котельникова : . (5.6) Подставив значения, получим:
Воспользовавшись (5.6) выберем интервал дискретизации: В этом случае количество выборок определяется следующим образом: . (5.7) N = 21; Теперь, когда мы нашли интервал дискретизации и количество выборок построим график дискретного сигнала, а так же для сравнения в одном масштабе с ним график аналогового (рисунок 5.3): Рисунок 5.3 – Графики: а) аналогового сигнала; б) дискретного сигнала. На рисунке 5.3 в величине выборок отражен весовой коэффициент δ - импульсов дискретизации. 4. Спектр дискретного сигнала, как известно, представляет собой сумму копий спектральных плоскостей исходного аналогового сигнала, подвергнутого дискретизации, сдвинутых на величину частоты следования выборок друг относительно друга [7]. Т. о. Формула спектральной плотности дискретного сигнала примет вид: . (5.8) Пользуясь (5.8) построим график при помощи [3]:
Рисунок 5.4 – а) модуль спектральной плотности аналогового сигнала; б) ограниченный спектр аналогового сигнала; в) спектральная плотность дискретного сигнала; 5. Дискретное преобразование Фурье определяется формулой (5.9) [2]: . (5.9) Где: - номер отсчета спектральной плотности; ; - номер отсчета дискретного сигнала; . Т. о. по формуле (5.9) и при помощи [3] можно подсчитать значения дискретных отсчетов: Зная, что выше вычисленные отсчеты следуют через интервалы , величина которых определяется следующим соотношением [2]: , (5.10) где: N – количество выборок дискретного сигнала; Т – период дискретизации; можно построить спектрограмму модулей этих коэффициентов. Данную спектрограмму будем строить в одном частотном масштабе с графиками спектров аналогового и дискретного сигналов и расположив ее под ними. Рисунок 5.5 – а) Спектр аналогового сигнала; б) Спектральная плотность дискретного сигнала; в) Спектрограмма модулей коэффициентов ДПФ. 6. Заменив в формуле (5.9) на Z (в данном случае играет роль частоты) прейдем к выражению для Z-преобразования. . (5.11) Распишем (5.11) подробнее, при этом заметим, что как видно из рисунка 5.3 отсчеты с номерами от 0 до 8 равны 1, а 9 равен 0. С учетом всего сказанного получим: . (5.12) При помощи простых математических преобразований представим (5.12) в виде дробно-рационального выражения: . (5.13) Задание №6. Условие: Уравнения цифровой фильтрации имеют вид: (6.1) Требуется: 1. Составить структурную схему фильтра. 2. Найти передаточную функцию фильтра. Определить полюса передаточной функции и нанести их на - плоскости. Сделать вывод об устойчивости. 3. Рассчитать и построить АЧХ и ФЧХ фильтра. 4. Найти системную функцию фильтра. Определить полюса системной функции и нанести их на - плоскости. Сделать вывод об устойчивости. 5. Рассчитать и построить импульсную характеристику фильтра. 6. Рассчитать и построить выходной сигнал цифрового фильтра, если на вход подаётся дискретный сигнал из задания 5. Исходные данные: Решение:
Рисунок 6.1 - Рекурсивный фильтр 2. Передаточная функция цифрового фильтра имеет вид: , (6.2) где ак, bk коэффициенты уравнения; - интервал дискретизации; - количество элементов задержки в трансверсальной части; - количество элементов задержки в рекурсивной части. Найдём полюса передаточной функции с помощью формулы: (6.3) Для нахождения полюсов воспользуемся [3]: Для обеспечения устойчивости необходимо и достаточно, чтобы полюса передаточной функции находились в левой полуплоскости комплексного переменного p. Поскольку - система устойчива. 3. С помощью [3] рассчитаем и построим АЧХ и ФЧХ фильтра: (6.4) Для данной передаточной функции с помощью [3] построим АЧХ и ФЧХ фильтра (рисунок 6.2):
Рисунок 6.2 - а) АЧХ фильтра; б) ФЧХ фильтра. 4. Найдем системную функцию фильтра путем замены ePT на Z. Системная функция будет иметь вид: (6.5) Устойчивость фильтра оценивается расположением полюсов системной функции на z плоскости. Фильтр устойчив, если полюса системной функции расположены внутри круга единичного радиуса с центром в точке . Определим полюса системной функции в плоскости Z с помощью [3]: - т.е. система устойчива. 5. Импульсная характеристика - это реакция цифрового фильтра на воздействие в виде единичного импульса (функция Кронекера). Используя уравнение цифровой фильтрации, получаем: (6.6) где Для данного фильтра импульсная характеристика будет определятся формулой: (6.7) График импульсной характеристики представлен на рисунке 6.4: Рисунок 6.4.-Импульсная характеристика. 6. Графики входного дискретного сигнала и выходного цифрового сигнала (рисунок6.3): Рисунок 6.3 - а) входной дискретный сигнал; б) выходной цифровой сигнал. Задание №7 Условие: Синтезировать согласованный фильтр для данного сигнала. Требуется: 1. Определить комплексный коэффициент передачи фильтра. 2. Синтезировать структурную схему фильтра. 3. Определить и построить выходной сигнал (под входным). 4. Оценить отношение сигнал/помеха на выходе в зависимости от . Исходные данные: Когерентная пачка из радиоимпульсов с прямоугольной огибающей и скважностью равной , Рисунок 7.1 – Входной сигнал Решение: 1. Синтезировать согласованный фильтр удобно при помощи его комплексного коэффициента передачи. Запишем общую формулу для его определения [2]: . (7.1) Где - постоянный коэффициент; - функция, комплексно сопряженная со спектральной плотностью входного сигнала; - время задержки пика выходного сигнала. Для существует ограничение - , это связано с физическими принципами работы согласованного фильтра [2]. Однако обычно полагают: . (7.2) Из формулы (7.1) видно, что задача сводится к определению спектральной плотности входного сигнала. Для ее определения разобьем входной сигнал на отдельные импульсы, затем определим спектр одного из них, а результат запишем в виде суммы вышеопределенных спектральных плотностей всех составляющих пачки, но сдвинутых по времени на расстояния кратные периоду их следования. Итак, определим - спектр одиночного радиоимпульса, путем применения свойства [2], в котором говорится, что спектр радиосигнала это есть спектр его огибающей только сдвинутый в область высоких частот (окрестность ). . (7.3) Где - спектральная плотность для огибающей одиночного радиоимпульса, смещенная в область ВЧ на . Запишем аналитическое выражение для огибающей радиоимпульса: . (7.4) Определим , для этого применим прямое преобразование Фурье [7]. ; . (7.5) Представим формулу для , заменив в (7.5) на : . (7.6) Т. о. спектральная плотность всей пачки импульсов будет определяться как сумма спектральных плотностей определяемых формулой (7.6), но сдвинутых друг относительно друга на: . (7.7) Представим это соотношение, применив теорему сдвига [2]: . (7.8) Запишем формулу комплексно сопряженной спектральной плотности входного сигнала, преобразовав (7.8), путем перемены знака мнимой части. . (7.9) Подставим (7.6) в (7.9), а полученный результат в (7.1) и проведем некоторые преобразования для удобства ее дальнейшего использования: (7.10) 2. Т. о. согласованный фильтр можно представить как каскадное соединение двух блоков: 1. согласованный фильтр одиночного радиоимпульса; 2. т. н. синхронный накопитель (многоотводная линия задержки). Схема такого фильтра представлена на рисунке 7.2.
Рисунок 7.2 – Структурная схема согласованного фильтра для сигнала представленного на рис. 7.1. График когерентной пачки радиоимпульсов проходящей через линию задержки представлен на рисунке (7.3).Рисунок 7.3 - График пачки радиоимпульсов, проходящих через линию задержки Сигнал на выходе согласованного фильтра с точностью до константы совпадает с автокорреляционной функцией входного сигнала, сдвинутой на в сторону запаздывания [2]. АКФ пачки радиоимпульсов с прямоугольной огибающей представляет собой последовательность треугольных импульсов длительностью и максимумом равным , где n –количество импульсов пачки, Э1 – полная энергия одного импульса (максимум АКФ одиночного импульса). Для начала рассчитаем АКФ одиночного радиоимпульса. Как известно АКФ радиосигнала равна произведению АКФ огибающей на АКФ несущей [1]: . (7.11) Поскольку АКФ несущего колебания есть само это колебание нулевой начальной фазой и амплитудой равной 1, то можно записать: . (7.12) Рассчитаем АКФ огибающей : . (7.13) Подставим (7.13) в (7.12): . (7.14) 3. При помощи (7.14) и приведенных выше условий с помощью [3] построим график выходного сигнала и АКФ (рисунок 7.4): Рисунок 7.4 –а) входной сигнал, б) сигнал на выходе согласованного фильтра; в)АКФ сигнала 4. Отношение сигнал/помеха на выходе согласованного фильтра равно: . (7.15) Где Э – полная энергия входного сигнала; W0 – спектральная плотность мощности белого шума на входе фильтра. Величина полной энергии входного сигнала с точностью до константы совпадает со значением выходного сигнала при (по свойствам АКФ). . (7.16) Из формул (7.15) и (7.16) видно, что при увеличении n – количества и скважности импульсов пачки входного сигнала соотношение сигнал/помеха на выходе фильтра увеличивается, что соответствует теории поскольку при этом растет база сигнала. Однако данный способ повышения выигрыша по величине отношения не улучшает корреляционных свойств сигнала, из-за чего через пороговое устройство может проходить не один, а несколько импульсов и отметок на экране индикаторного устройства так же будет несколько. Т. о. кроме увеличения базы сигнала необходимо еще и улучшать его корреляционные свойства. ПЕРЕЧЕНЬ ССЫЛОК1. Гармаш М. А. Конспект лекций по дисциплине СиПРТ (1,2 часть). 2. Гоноровский И.С. Радиотехнические цепи и сигналы: Учебник для вузов.4-е издание, перераб. и доп.-М.:Радио и связь,1986.- 512с. 3. Математический пакет MathCAD 2000. 4. Гимпилевич Ю.Б., Афонин И.Л. методические указания к выполнению курсовой работы по дисциплине СиПРТ для студентов специальности 7.090701-“Радиотехника” (дневная форма обучения). |
||||||||||||||||||||||||||||||||||||||||
|