Главная Рефераты по авиации и космонавтике Рефераты по административному праву Рефераты по безопасности жизнедеятельности Рефераты по арбитражному процессу Рефераты по архитектуре Рефераты по астрономии Рефераты по банковскому делу Рефераты по сексологии Рефераты по информатике программированию Рефераты по биологии Рефераты по экономике Рефераты по москвоведению Рефераты по экологии Краткое содержание произведений Рефераты по физкультуре и спорту Топики по английскому языку Рефераты по математике Рефераты по музыке Остальные рефераты Рефераты по биржевому делу Рефераты по ботанике и сельскому хозяйству Рефераты по бухгалтерскому учету и аудиту Рефераты по валютным отношениям Рефераты по ветеринарии Рефераты для военной кафедры Рефераты по географии Рефераты по геодезии Рефераты по геологии Рефераты по геополитике Рефераты по государству и праву Рефераты по гражданскому праву и процессу Рефераты по кредитованию Рефераты по естествознанию Рефераты по истории техники Рефераты по журналистике Рефераты по зоологии Рефераты по инвестициям Рефераты по информатике Исторические личности Рефераты по кибернетике Рефераты по коммуникации и связи Рефераты по косметологии Рефераты по криминалистике Рефераты по криминологии Рефераты по науке и технике Рефераты по кулинарии Рефераты по культурологии Рефераты по авиации и космонавтике Рефераты по административному праву Рефераты по безопасности жизнедеятельности Рефераты по арбитражному процессу Рефераты по архитектуре Рефераты по астрономии Рефераты по банковскому делу Рефераты по сексологии Рефераты по информатике программированию Рефераты по биологии Рефераты по экономике Рефераты по москвоведению Рефераты по экологии Краткое содержание произведений Рефераты по физкультуре и спорту Топики по английскому языку Рефераты по математике Рефераты по музыке Остальные рефераты Рефераты по биржевому делу Рефераты по ботанике и сельскому хозяйству Рефераты по бухгалтерскому учету и аудиту Рефераты по валютным отношениям Рефераты по ветеринарии Рефераты для военной кафедры Рефераты по географии Рефераты по геодезии Рефераты по геологии Рефераты по геополитике Рефераты по государству и праву Рефераты по гражданскому праву и процессу Рефераты по кредитованию Рефераты по естествознанию Рефераты по истории техники Рефераты по журналистике Рефераты по зоологии Рефераты по инвестициям Рефераты по информатике Исторические личности Рефераты по кибернетике Рефераты по коммуникации и связи Рефераты по косметологии Рефераты по криминалистике Рефераты по криминологии Рефераты по науке и технике Рефераты по кулинарии Рефераты по культурологии |
Курсовая работа: Анализ предприятия с использованием регрессивного анализаКурсовая работа: Анализ предприятия с использованием регрессивного анализаI. Введение II. Теоретическая часть 1. Основные производственные показатели предприятия (организации) 2. Основные понятия корреляции и регрессии 3. Корреляционно-регрессионный анализ 4. Пример для теоретической части III. Расчетная часть IV. Заключение V. Список использованной литературы I. Введение Полная и достоверная статистическая информация является тем необходимым основанием, на котором базируется процесс управления экономикой. Принятие управленческих решений на всех уровнях – от общегосударственного или регионального и до уровня отдельной корпорации или частной фирмы – невозможно без должного статистического обеспечения. Именно статистические данные позволяют определить объемы валового внутреннего продукта и национального дохода, выявить основные тенденции развития отраслей экономики, оценить уровень инфляции, проанализировать состояние финансовых и товарных рынков, исследовать уровень жизни населения и другие социально-экономические явления и процессы. Статистика – это наука, изучающая количественную сторону массовых явлений и процессов в неразрывной связи с их качественной стороной, количественное выражение закономерностей общественного развития в конкретных условиях места и времени. Для получения статистической информации органы государственной и ведомственной статистики, а также коммерческие структуры проводят различного рода статистические исследования. Процесс статистического исследования включает три основные стадии: сбор данных, их сводка и группировка, анализ и расчет обобщающих показателей. От того, как собран первичный статистический материал, как он обработан и сгруппирован, в значительной степени зависят результаты и качество всей последующей работы. Недостаточная проработка программно-методологических и организационных аспектов статистического наблюдения, отсутствие логического и арифметического контроля собранных данных, несоблюдение принципов формирования групп в конечном счете могут привести к абсолютно ошибочным выводам. Не менее сложной, трудоемкой и ответственной является и заключительная, аналитическая стадия исследования. На этой стадии рассчитываются средние показатели и показатели распределения, анализируется структура совокупности, исследуется динамика и взаимосвязи между изучаемыми явлениями и процессами. Используемые на всех стадиях исследования приемы и методы сбора, обработки и анализа данных являются предметом изучения общей теории статистики, которая является базовой отраслью статистической науки. Разработанная ею методология применяется в макроэкономической статистике, отраслевых статистиках (промышленности, сельского хозяйства, торговли и прочих), статистике населения, социальной статистике и в других статистических отраслях. II. Теоретическая часть 1. Основные производственные показатели предприятия (организации)
Статистика промышленности – одна из отраслей экономической статистики. Она изучает промышленность, происходящие в ней явления, процессы, закономерности и взаимосвязи. На основе статистического изучения производственно-хозяйственной деятельности промышленных предприятий вырабатываются стратегия и тактика развития предприятия, обосновываются производственная программа и управленческие решения, осуществляется контроль за их выполнением, выявляются резервы повышения эффективности производства, оцениваются результаты деятельности предприятий, его подразделений и работников. В статистике промышленности применяют методологию системного статистического анализа основных экономических показателей результатов деятельности предприятия, характерных для рыночной экономики. Проводят анализ основных статистических показателей по различным направлениям производственно-хозяйственной деятельности предприятия: производство продукции, трудовые ресурсы и уровень их использования, основные фонды и производственное оборудование, оборотные средства и предметы труда, научно-технический прогресс, себестоимость промышленной продукции. 1. Статистика производства продукции Продукция промышленности – прямой полезный результат промышленно-производственной деятельности предприятий, выраженный либо в форме продуктов, либо в форме производственных услуг (работ промышленного характера). Для характеристики результатов деятельности отдельных предприятий, объединений, отраслей промышленности и всей промышленности в целом используется система стоимостных показателей продукции, включающая в себя валовой и внутризаводской обороты, товарную и реализованную продукцию. 2. Статистика рабочей силы и рабочего времени Использование трудовых ресурсов в промышленности – одна из основных проблем, значение которой будет возрастать в связи с напряженным трудовым балансом. Вместе с тем, контроль за уровнем использования трудовых ресурсов – одна из важнейших задач статистического анализа результатов деятельности промышленных предприятий. 3. Статистика производительности труда Производительность труда – качественная его характеристика, показывающая способность работников к производству материальных благ в единицу времени. Уровень производительности труда характеризуется количеством продукции, создаваемой в единицу времени (выработка – прямой показатель), или затратами времени на производство единицы продукции (трудоемкость – обратный показатель). Прямые и обратные показатели используются для характеристики уровня производительности труда. 4. Статистика заработной платы Заработная плата представляет собой часть общественного продукта, поступающего в индивидуальное распоряжение работников в соответствии с количеством затраченного ими труда. Статистика промышленности рассматривает номинальную заработную плату, выраженную суммой денег, начисленной работнику, без учета их покупательной способности. 5. Статистика основных фондов и производственного оборудования Основные фонды представляют собой средства труда, которые целиком и в неизменной натуральной форме функционируют в производстве в течение длительного времени, постепенно перенося свою стоимость на произведенный продукт. В статистике промышленности различают следующие характеристики стоимости основных фондов: полная первоначальная стоимость; первоначальная стоимость за вычетом износа (остаточная первоначальная стоимость); полная восстановительная стоимость; восстановительная стоимость за вычетом износа (остаточная восстановительная стоимость). 6. Статистика оборотных средств и предметов труда 6.1 Статистика оборотных средств Оборотные средства – это выраженные в денежной форме оборотные фонды и фонды обращения, авансируемые в плановом порядке для обеспечения непрерывности производства и реализации продукции. 6.2 Статистика предметов труда По своему происхождению предметы труда подразделяются на сырье и материалы. Сырьем называют продукты сельского хозяйства и добывающей промышленности; материалы – продукты обрабатывающей промышленности. 7. Статистика научно-технического прогресса Основными направлениями научно-технического прогресса являются: электрификация, механизация, автоматизация и химизация производства; освоение и внедрение новых видов машин, аппаратов, приборов и новых технологических процессов; внедрение изобретений и рационализаторских предложений: углубление специализации и кооперирования. 8. Статистика себестоимости продукции Под себестоимостью продукции понимают сумму выраженных в денежной форме затрат, связанных с выпуском определённого объема и состава продукции. Себестоимость – обобщающий качественный показатель работы предприятия. Ее уровень служит основой для определения цен на отдельные виды продукции. 2. Основные понятия корреляции и регрессии
Исследуя природу, общество, экономику, необходимо считаться со взаимосвязью наблюдаемых процессов и явлений. При этом полнота описания так или иначе определяется количественными характеристиками причинно-следственных связей между ними. Оценка наиболее существенных из них, а также воздействия одних факторов на другие является одной из основных задач статистики. Формы проявления взаимосвязей весьма разнообразны. В качестве двух самых общих их видов выделяют функциональную (полную) и корреляционную (неполную) связи. В первом случае величине факторного признака строго соответствует одно или несколько значений функции. Достаточно часто функциональная связь проявляется в физике, химии. В экономике примером может служить прямо пропорциональная зависимость между производительностью труда и увеличением производства продукции. Корреляционная связь (которую также называют неполной, или статистической) проявляется в среднем, для массовых наблюдений, когда заданным значениям зависимой переменной соответствует некоторый ряд вероятных значений независимой переменной. Объяснение тому – сложность взаимосвязей между анализируемыми факторами, на взаимодействие которых влияют неучтенные случайные величины. Поэтому связь между признаками проявляется лишь в среднем, в массе случаев. При корреляционной связи каждому значению аргумента соответствуют случайно распределенные в некотором интервале значения функции. Например, некоторое увеличение аргумента повлечет за собой лишь среднее увеличение или уменьшение (в зависимости от направленности) функции, тогда как конкретные значения у отдельных единиц наблюдения будут отличаться от среднего. Такие зависимости встречаются повсеместно. Например, в сельском хозяйстве это может быть связь между урожайностью и количеством внесенных удобрений. Очевидно, что последние участвуют в формировании урожая. Но для каждого конкретного поля, участка одно и то же количество внесенных удобрений вызовет разный прирост урожайности, так как во взаимодействии находится еще целый ряд факторов (погода, состояние почвы и др.), которые и формируют конечный результат. Однако в среднем такая связь наблюдается – увеличение массы внесенных удобрений ведет к росту урожайности. По направлению связи бывают прямыми, когда зависимая переменная растет с увеличением факторного признака, и обратными, при которых рост последнего сопровождается уменьшением функции. Такие связи также можно назвать соответственно положительными и отрицательными. Относительно своей аналитической формы связи бывают линейными и нелинейными. В первом случае между признаками в среднем проявляются линейные соотношения. Нелинейная взаимосвязь выражается нелинейной функцией, а переменные связаны между собой в среднем нелинейно. Существует еще одна достаточно важная характеристика связей с точки зрения взаимодействующих факторов. Если характеризуется связь двух признаков, то ее принято называть парной. Если изучаются более чем две переменные – множественной. Указанные выше классификационные признаки наиболее часто встречаются в статистическом анализе. Но, кроме перечисленных различают также непосредственные, косвенные и ложные связи. Собственно, суть каждой из них очевидна из названия. В первом случае факторы взаимодействуют между собой непосредственно. Для косвенной связи характерно участие какой-то третьей переменной, которая опосредует связь между изучаемыми признаками. Ложная связь – это связь, установленная формально и, как правило, подтвержденная только количественными оценками. Она не имеет под собой качественной основы или же бессмысленна. По силе различаются слабые и сильные связи. Эта формальная характеристика выражается конкретными величинами и интерпретируется в соответствии с общепринятыми критериями силы связи для конкретных показателей. В наиболее общем виде задача статистики в области изучения взаимосвязей состоит в количественной оценке их наличия и направления, а также характеристике силы и формы влияния одних факторов на другие. Для ее решения применяются две группы методов, одна из которых включает в себя методы корреляционного анализа, а другая – регрессионный анализ. В то же время ряд исследователей объединяет эти методы в корреляционно-регрессионный анализ, что имеет под собой некоторые основания: наличие целого ряда общих вычислительных процедур, взаимодополнения при интерпретации результатов и др. Поэтому в данном контексте можно говорить о корреляционном анализе в широком смысле – когда всесторонне характеризуется взаимосвязь. В то же время выделяют корреляционный анализ в узком смысле – когда исследуется сила связи – и регрессионный анализ, в ходе которого оцениваются ее форма и воздействие одних факторов на другие. Задачи собственно корреляционного анализа сводятся к измерению тесноты связи между варьирующими признаками, определению неизвестных причинных связей и оценке факторов оказывающих наибольшее влияние на результативный признак. Задачи регрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значении зависимой переменной. Решение названных задач опирается на соответствующие приемы, алгоритмы, показатели, применение которых дает основание говорить о статистическом изучении взаимосвязей. 3. Корреляционно-регрессионный анализ Для выявления наличия связи, ее характера и направления в статистике используют методы: приведения параллельных данных; аналитических группировок; графический, корреляции. Корреляционно-регрессионный анализ включает в себя измерение тесноты, направления связи и установление аналитического выражения (формы) связи (регрессионный анализ). Одним из методов корреляционно-регрессионного анализа является метод парной корреляции, рассматривающий влияние вариации факторного признака x на результативный y. Аналитическая связь между ними описывается уравнениями: прямой параболы гиперболы и т.д. Оценка параметров уравнения регрессии осуществляется методом наименьших квадратов, в основе которого лежит требование минимальности сумм квадратов отклонений эмпирических данных yi от выравненных (теоретических) yxi Система нормальных уравнений для нахождения параметров линейной парной регрессии имеет вид: Для оценки типичности параметров уравнения регрессии используется t-критерий Стьюдента. При этом вычисляются фактические значения t-критерия для параметров. Полученные фактические значения сравниваются с критическим, которые получают по таблице Стьюдента с учетом принятого уровня значимости и числа степеней свободы. Полученные при анализе корреляционной связи параметры уравнения регрессии признаются типичными, если t фактическое больше t критического. По приведенным на типичность параметрам уравнения регрессии производится синтезирование (построение) математической модели связи. При этом параметры примененной в анализе математической функции получают соответствующие количественные значения: один параметр показывает усредненное влияние на результативный признак неучтенных (не выделенных для исследования) факторов, а другой параметр – на сколько изменяется в среднем значение результативного признака при изменении факторного на единицу его собственного измерения. Проверка практической значимости синтезированных в корреляционно-регрессионном анализе математических моделей осуществляется посредством показателей тесноты связи между признаками x и y. Для статистической оценки тесноты связи применяются следующие показатели вариации: 1. общая дисперсия результативного признака, отображающая общее влияние всех факторов; 2. факторная дисперсия результативного признака, отображающая вариацию y только от воздействия изучаемого фактора, которая характеризует отклонение выровненных значений yx от их общей средней величины y; 3. остаточная дисперсия, отображающая вариацию результативного признака y от всех прочих, кроме x факторов, которая характеризует отклонение эмпирических (фактических) значений результативного признака yi от их выровненных значений yxi. Соотношение между факторной и общей дисперсиями характеризует меру тесноты связи между признаками x и y Этот показатель называется индексом детерминации (причинности). Он выражает долю факторной дисперсии, т.е. характеризует, какая часть общей вариации результативного признака y объясняется изменением факторного признака x. На основе предыдущей формулы определяется индекс корреляции R: Используя правило сложения дисперсий, можно вычислить индекс корреляции. При прямолинейной форме связи показатель тесноты связи определяется по формуле линейного коэффициента корреляции r: Для оценки значимости коэффициента корреляции r применяется t-критерий Стьюдента с учетом заданного уровня значимости и числа степеней свободы k. Если , то величина коэффициента корреляции признается существенной. Для оценки значимости индекса корреляции R применяется F-критерий Фишера. Фактическое значение критерия FR определяется по формуле: где m – число параметров уравнения регрессии. Величина FR сравнивается с критическим значением FK, которое определяется по таблице F – критерия с учетом принятого уровня значимости и числа степеней свободы k1=m-1 и k2=n-m. Если FR> FK, то величина индекса корреляции признается существенной. По степени тесноты связи различают количественные критерии оценки тесноты связи.
С целью расширения возможностей экономического анализа используются частные коэффициенты эластичности: Он показывает, на сколько процентов в среднем изменится значение результативного признака при изменении факторного на 1%. 4. Пример для теоретической части Имеются следующие данные о производстве молочной продукции и стоимости основных производственных фондов по 15 предприятиям Московской области. Произведем синтез адекватной экономико-математической модели между изучаемыми признаками на базе метода наименьших квадратов. С экономической точки зрения сформулируем выводы относительно исследуемой связи. Зависимость y от x найдем с помощью корреляционно-регрессионного анализа. Рассмотрим прямолинейную форму зависимости y от x:
Параметры этого уравнения найдем с помощью метода наименьших квадратов и, произведя предварительные расчеты, получим: Получаем следующее уравнение регрессии: Далее определим адекватность полученной модели. Определим фактические значения t-критерия для a0 и a1. Из полученного уравнения следует, что с увеличением основных производственных фондов на 1 млн. руб., стоимость молочной продукции возрастает в среднем на 1,311 млн. руб. III. Расчетная часть Имеются исходные выборочные данные по организациям одной из отраслей хозяйствования в отчетном году (выборка 20%-ная, бесповторная) о результатах производственной деятельности организаций:
Задание 1 По исходным данным табл. Х: 1. Построить статистический ряд распределения организаций по уровню производительности труда, образовав пять групп с равными интервалами. 2. Постройте графики полученного ряда распределения. 3. Рассчитайте характеристики ряда распределения: среднюю арифметическую, среднее квадратическое отклонение, коэффициент вариации. 4. Вычислите среднюю арифметическую по исходным данным (табл. Х), сравните её с аналогичным показателем, рассчитанным в п. 3 настоящего задания. Объясните причину их расхождения. Сделайте выводы по результатам выполнения Задания. Выполнение Задания 1. 1. Решение: Для построения интервального ряда распределения определяем величину интервала h по формуле: , где – наибольшее и наименьшее значения признака в исследуемой совокупности, k – число групп интервального ряда. При заданных k = 5, xmax = 360 тыс.руб. и xmin = 120 тыс.руб. При h = 48 тыс. руб. границы интервалов ряда распределения имеют следующий вид (табл. 1):
Определяем количество организаций, входящих в каждую группу, используя принцип полуоткрытого интервала [ ), согласно которому организации со значениями признаков, служащие одновременно верхними и нижними границами смежных интервалов (168, 216, 264, 312 и 360), будем относить ко второму из смежных интервалов. Для определения числа организаций в каждой группе строим таблицу 2.
На основе групповых итоговых строк «Всего» табл. 2 формируем итоговую таблицу 3, представляющую интервальный ряд распределения организаций по уровню производительности труда.
Приведем еще три характеристики полученного ряда распределения - частоты групп в относительном выражении, накопленные (кумулятивные) частоты Sj, получаемые путем последовательного суммирования частот всех предшествующих (j-1) интервалов, и накопленные частости, рассчитываемые по формуле .
Вывод. Анализ интервального ряда распределения изучаемой совокупности организаций показывает, что распределение организаций по уровню производительности труда не является равномерным: преобладают организации с уровнем производительности труда от 216 до 264 тыс.руб. (это 12 организаций, доля которых составляет 40%); самая малочисленная группа организаций имеет уровень производительности труда от 120 до 168 тыс.руб., которая включает 3 организации, что составляет 10% от общего числа организаций. 2. Решение: По данным таблицы 3 (графы 2 и 3) строим график распределения организаций по уровню производительности труда. Рис. 1. График полученного ряда распределения Мода (Мо) – значение случайной величины, встречающееся с наибольшей вероятностью в дискретном вариационном ряду – вариант, имеющий наибольшую частоту. Наибольшей частотой является число 12. Этой частоте соответствует модальное значение признака, т.е. количество предприятий. Мода свидетельствует, что в данном примере чаще всего встречаются группы предприятий, входящие в интервал от 216 до 264. В интервальных рядах распределения с равными интервалами мода вычисляется по формуле: где хМo – нижняя граница модального интервала, h – величина модального интервала, fMo – частота модального интервала, fMo-1 – частота интервала, предшествующего модальному, fMo+1 – частота интервала, следующего за модальным. Вывод. В данном случае наибольший процент предприятий по уровню производительности труда приходится на интервал от 216 до 264, а само значение средней характеризуется 246 (тыс.руб.) Медиана (Ме) – это вариант, который находится в середине вариационного ряда. Медиана делит ряд на две равные (по числу единиц) части – со значениями признака меньше медианы и со значениями признака больше медианы. Чтобы найти медианы, необходимо отыскать значение признака, которое находится в середине упорядоченного ряда. Определяем медианный интервал, используя графу 5 табл. 4. Медианным интервалом является интервал 216-264 тыс.руб., т.к. именно в этом интервале накопленная частота Sj=19 впервые превышает полу-сумму всех частот . В интервальных рядах распределения медианное значение (поскольку оно делит всю совокупность на две равные по численности ряды) оказывается в каком-то из интервалов признака х. Этот интервал характерен тем, что его кумулятивная частота (накопленная сумма частот) равна или превышает полу-сумму всех частот ряда. Значение медианы вычисляется линейной интерполяцией по формуле: Вывод: Полученный результат говорит о том, что из 30 организаций половина организаций имеют уровень производительности труда менее 247 тыс. руб., а вторая свыше. 3. Решение: Для расчета характеристик ряда распределения , σ, σ2, Vσ на основе табл. 4 строим вспомогательную таблицу 5 (x’j – середина интервала).
Средняя арифметическая взвешенная – средняя сгруппированных величин x1, x2, …, xn – вычисляется по формуле: Среднее квадратическое отклонение – это обобщающая характеристика размеров вариации признака в совокупности; оно показывает, на сколько в среднем отклоняются конкретные варианты от среднего значения; является абсолютной мерой колеблемости признака и выражается в тех же единицах, что и варианты, поэтому экономически хорошо интерпретируется. Рассчитаем среднее квадратическое отклонение, которое равно корню квадратному из дисперсии: Рассчитаем дисперсию: σ2 = 54,14052=2931,2 Коэффициент вариации представляет собой выраженное в процентах отношение средне квадратического отклонения к средней арифметической. Рассчитаем коэффициент вариации: Вывод. Анализ полученных значений показателей и σ говорит о том, что средняя величина уровня производительности труда составляет 248 тыс.руб. отклонение от этой величины в ту или иную сторону составляет 54,1405 (или 21,83%), наиболее характерный уровень производительности труда находится в пределах от 194 до 302 тыс.руб. (диапазон ). Значение Vσ = 21,83% не превышает 33%, следовательно, вариация уровня производительности труда в исследуемой совокупности организаций незначительна и совокупность по данному признаку однородна. Расхождение между значениями незначительно (=248 тыс.руб., Мо=246 тыс.руб., Ме=247 тыс. руб.), что подтверждает вывод об однородности совокупности организаций. Таким образом, найденное среднее значение уровня типичной производительности является типичной, надежной характеристикой исследуемой совокупности организаций. 4. Решение: Для расчета средней арифметической по исходным данным по уровню производительности труда применяется формула средней арифметической простой: , Причина расхождения средних величин, рассчитанных по исходным данным (247 тыс.руб.) и по интервальному ряду распределения (248 тыс.руб.), заключается в том, что в первом случае средняя определяется по фактическим значениям исследуемого признака для всех 30-ти организаций, а во втором случае в качестве значений признака берутся середины интервалов хj’ и, следовательно, значение средней будет менее точным. Вместе с тем, при округлении обеих рассматриваемых величин их значения совпадают, что говорит о достаточно равномерном распределении уровня производительности труда внутри каждой группы интервального ряда. Задание 2 По исходным данным необходимо выполнить следующее: 1. Установить наличие и характер корреляционной связи между признаками фондоотдача и уровень производительности труда, образовав пять групп с равными интервалами по каждому из признаков, используя метод аналитической группировки; 2. Измерить тесноту корреляционной связи, между фондоотдачей и уровнем производительности труда с использованием коэффициента детерминации и эмпирического корреляционного отношения. Сделать выводы. Выполнение Задания 2: По условию Задания 2 факторным является признак Фондоотдача, результативным – признак Уровень производительности труда. 1. Решение: Аналитическая группировка строится по факторному признаку Х и для каждой j-ой группы ряда определяется средне групповое значение результативного признака Y. Если с ростом значений фактора Х от группы к группе средние значения систематически возрастают (или убывают), между признаками X и Y имеет место корреляционная связь. Используя разработочную таблицу 2, строим вспомогательную таблицу 6 для проведения в дальнейшем аналитической группировки.
Используя таблицу 6, строим аналитическую группировку, характеризующую зависимость между факторным признаком Х – Фондоотдача и результативным признаком Y – Уровень производительности труда. Групповые средние значения yj получаем из таблицы 6 (графа 5), основываясь на итоговых строках «Всего». Построенную аналитическую группировку представляет табл. 7.:
Вывод. Анализ данных табл. 7 показывает, что с увеличением фондоотдачи от группы к группе систематически возрастает и средний уровень производительности труда по каждой группе организаций, что свидетельствует о наличии прямой корреляционной связи между исследуемыми признаками. 2. Решение: Коэффициент детерминации характеризует силу влияния факторного (группировочного) признака Х на результативный признак Y и рассчитывается как доля межгрупповой дисперсии признака Y в его общей дисперсии: где – общая дисперсия признака Y, – межгрупповая (факторная) дисперсия признака Y. Общая дисперсия характеризует вариацию результативного признака, сложившуюся под влиянием всех действующих на Y факторов (систематических и случайных) и вычисляется по формуле , где yi – индивидуальные значения результативного признака; – общая средняя значений результативного признака; n – число единиц совокупности. Межгрупповая дисперсия измеряет систематическую вариацию результативного признака, обусловленную влиянием признака-фактора Х (по которому произведена группировка) и вычисляется по формуле: , где –групповые средние, – общая средняя, –число единиц в j-ой группе, k – число групп. Для расчета показателей и необходимо знать величину общей средней , которая вычисляется как средняя арифметическая простая по всем единицам совокупности: Значения числителя и знаменателя формулы имеются в табл. 7 (графы 3 и 4 итоговой строки). Используя эти данные, получаем общую среднюю :
Для расчета общей дисперсии применяется вспомогательная табл. 8.
Рассчитаем общую дисперсию: Для расчета межгрупповой дисперсии строим вспомогательную таблицу 9. При этом используются групповые средние значения из табл. 7 (графа 5).
Рассчитаем межгрупповую дисперсию: Определяем коэффициент детерминации: Вывод. 93,53% вариации уровня производительности труда обусловлено вариацией уровня фондоотдачи, а 6,47% – влиянием прочих неучтенных факторов. Эмпирическое корреляционное отношение оценивает тесноту связи между факторным и результативным признаками и вычисляется по формуле: Рассчитаем показатель : Для оценки тесноты связи с помощью корреляционного отношения используется шкала Чэддока (см. теоретическую часть стр. 14): Вывод: согласно шкале Чэддока связь между средним уровнем производительности труда и фондоотдачей по организациям является весьма тесной. Задание 3 По результатам выполнения Задания 1 с вероятностью 0,683 определите: 1. ошибку выборки среднего уровня производительности труда и границы, в которых будет находиться средний уровень производительности труда в генеральной совокупности. 2. ошибку выборки доли организаций с уровнем производительности труда 264 тыс. руб. и более и границы, в которых будет находиться генеральная доля. Выполнение Задания 3. 1. Решение: Применяя выборочный метод наблюдения, необходимо рассчитать ошибки выборки (ошибки репрезентативности), т.к. генеральные и выборочные характеристики, как правило, не совпадают, а отклоняются на некоторую величину ε. Принято вычислять два вида ошибок выборки - среднюю и предельную . Для расчета средней ошибки выборки применяются различные формулы в зависимости от вида и способа отбора единиц из генеральной совокупности в выборочную. Для собственно-случайной и механической выборки с бесповторным способом отбора средняя ошибка для выборочной средней определяется по формуле , где – общая дисперсия изучаемого признака, N – число единиц в генеральной совокупности, n – число единиц в выборочной совокупности. Предельная ошибка выборки определяет границы, в пределах которых будет находиться генеральная средняя: , , где – выборочная средняя, – генеральная средняя. Предельная ошибка выборки кратна средней ошибке с коэффициентом кратности t (называемым также коэффициентом доверия): Коэффициент кратности t зависит от значения доверительной вероятности Р, гарантирующей вхождение генеральной средней в интервал , называемый доверительным интервалом. Наиболее часто используемые доверительные вероятности Р и соответствующие им значения t задаются следующим образом (табл. 10): Таблица 10
По условию Задания 2 выборочная совокупность насчитывает 30 организаций, выборка 20% бесповторная, следовательно, генеральная совокупность включает 150 организаций. Выборочная средняя , дисперсия определены в Задании 1 (п. 3). Значения параметров, необходимых для решения задачи, представлены в табл. 11: Таблица 11
Рассчитаем среднюю ошибку выборки: Рассчитаем предельную ошибку выборки: Определим доверительный интервал для генеральной средней: Вывод. На основании проведенного выборочного обследования с вероятностью 0,683 можно утверждать, что для генеральной совокупности организаций средняя величина среднего уровня производительности труда находится в пределах от 239 до 257 тыс.руб. 2. Решение: Доля единиц выборочной совокупности, обладающих тем или иным заданным свойством, выражается формулой , где m – число единиц совокупности, обладающих заданным свойством; n – общее число единиц в совокупности. Для собственно-случайной и механической выборки с бесповторным способом отбора предельная ошибка выборки доли единиц, обладающих заданным свойством, рассчитывается по формуле , где w – доля единиц совокупности, обладающих заданным свойством; (1-w) – доля единиц совокупности, не обладающих заданным свойством, N – число единиц в генеральной совокупности, n– число единиц в выборочной совокупности. Предельная ошибка выборки определяет границы, в пределах которых будет находиться генеральная доля р единиц, обладающих исследуемым признаком: По условию Задания 3 исследуемым свойством организаций является равенство или превышение среднего уровня производительности труда 264 тыс. руб. Число организаций с данным свойством определяется из табл. 2 (графа 2): m=12 Рассчитаем выборочную долю: Рассчитаем предельную ошибку выборки для доли: Определим доверительный интервал генеральной доли: Вывод. С вероятностью 0,683 можно утверждать, что в генеральной совокупности организаций региона доля организаций с средним уровнем производительности труда 264 тыс.руб. и более будет находиться в пределах от 32% до 48%.
Задание 4
По результатам расчетов заданий 1 и 2 найдите уравнение корреляционной связи между фондоотдачей и производительностью труда, изобразите корреляционную связь графически. Для определения тесноты корреляционной связи рассчитайте коэффициент корреляции. Сделайте выводы. Выполнение задания 4. Имеются данные по 30 предприятиям по уровню производительности труда и фондоотдачи. Уравнение корреляционной связи (уравнение регрессии, модели) выражает количественное соотношение между факторным (x – фондоотдача) и результативным (y – уровень производительности труда) признаками. Рассмотрим прямолинейную форму зависимости y от x: Поскольку для установления наличия корреляционной связи между признаками применялся метод аналитической группировки, то параметры для уравнения регрессии рационально определить по сгруппированным данным (табл. 7). В таком случае система нормальных уравнений для уравнения прямой будет иметь вид: где – групповые средние результативного признака, x – середина интервалов факторного признака. Используя данные табл. 7 строим расчетную таблицу 10, чтобы получить численные значения параметров уравнения регрессии а0 и а1:
Итак, получилось, что а0=1,494, а а1=227,431. Нас интересует именно параметр а1, показывающий изменение результативного признака при изменении факторного признака на единицу. Итак, уравнение корреляционной связи между фондоотдачей и производительностью труда выглядит так: График 2. Графическое изображение корреляционной связи Теперь вычислим линейный коэффициент корреляции, который называется линейным коэффициентом детерминации. Из определения коэффициента детерминации очевидно, что его числовое значение всегда заключено в пределах от 0 до 1, т.е. . Степень тесноты связи полностью соответствует теоретическому корреляционному отношению, которое является более универсальным показателем тесноты связи по сравнению с линейным коэффициентом корреляции. Составим расчетную таблицу 11, которая будет иметь вид:
Для практических вычислений линейный коэффициент корреляции удобнее исчислять по формуле: Вывод: Факт совпадения и несовпадения значений теоретического корреляционного отношения и линейного коэффициента корреляции используется для оценки формы связи. В нашем случае несовпадение этих величин говорит о том, что связь между изучаемыми признаками не прямолинейна, а криволинейна. Итак, можно сделать вывод, что связь между уровнем производительности труда и фондоотдачей по организациям является весьма тесной криволинейной. IV. Заключение Итак, в заключение хочется отметить, что понятия «корреляция» и «регрессии» тесно связаны между собой. В экономических исследованиях корреляционный и регрессионный анализ нередко объединяют в один – корреляционно-регрессионный анализ. Подразумевается, что в результате такого анализа будет построена регрессионная зависимость (т.е. проведен регрессионный анализ) и рассчитаны коэффициенты ее тесноты и значимости (т.е. проведен корреляционный анализ). Практическая реализация корреляционно-регрессионного анализа включает следующие этапы: 1. Постановка задачи – определяются показатели, зависимость между которыми подлежит оценке, формулируется экономически осмысленная и приемлемая гипотеза о зависимости между ними; 2. Формирование перечня факторов, их логический анализ – выбирается оптимальное число наиболее существенных переменных факторов, влияющих на зависимый показатель; 3. Спецификация функции регрессии – дается конкретная формулировка гипотезы о форме зависимости; 4. Оценка функции регрессии и проверка адекватности модели – определяются числовые значения параметров регрессии, вычисляется ряд показателей, характеризующих точность проведенного анализа; 5. Экономическая интерпретация – результаты анализа сравниваются с гипотезами, сформулированными на первом этапе исследования, оценивается их правдоподобие с экономической точки зрения, делаются аналитические выводы. Следует заметить, что традиционные методы корреляции и регрессии широко представлены в разного рода статистических пакетах программ для ЭВМ. Исследователю остается только правильно подготовить информацию, выбрать удовлетворяющий требованиям анализа пакет программ и быть готовым к интерпретации полученных результатов. Алгоритмов вычисления параметров связи существует множество, и в настоящее время вряд ли целесообразно проводить такой сложный вид анализа вручную. Вычислительные процедуры представляют самостоятельный интерес, но знание принципов изучения взаимосвязей, возможностей и ограничений тех или иных методов интерпретации результатов является обязательным условием исследования. Анализ отчетности не замыкается на специфических, разработанных в его рамках приемах, но активно использует самые разнообразные методики, творчески переработав их применительно к собственным требованиям. В частности, использование корреляционно-регрессионного анализа позволяет более эффективно решать задачи прогнозирования доходов организации и планирования ее будущего финансового состояния, в связи с чем, данный математический метод рекомендуется использовать более активно. V. Список использованной литературы 1. Бараз В.Р. Корреляционно-регрессионный анализ связи показателей коммерческой деятельности с использованием программы Exel: Учебное пособие – Екатеринбург: ГОУ ВПО «УГТУ-УПИ», 2005; 2. Курс социально-экономической статистики: Учебник для вузов/Под ред. проф. М.Г. Назарова. — М.: Финстатинформ, ЮНИТИ-ДАНА, 2000; 3. Алесинская Т.В. Учебное пособие по решению задач по курсу «Экономико-математические методы и модели» – Таганрог: Изд-во ТРТУ, 2002 4. Сергеева С.А. «Применение корреляционно-регрессионного метода в анализе финансового состояния организации» Белгородский университет потребительской кооперации. http://www.rusnauka.com/ONG/Economics/ 8_sergeeva%20s.a..doc.htm 5. Грищенко О.В. Анализ и диагностика финансово-хозяйственной деятельности предприятия: Учебное пособие - Таганрог: Изд-во ТРТУ, 2000. 6. Минашкин В.Г., Шмойлова Р.А. и др. Теория статистики/Московская финансово-промышленная академия, М., – 2004 7. Микроэкономическая статистика: Учебник/Под ред. С.Д. Ильенковой. – М.: Финансы и статистика, 2009 8. Герасимов Б.И. В.В.Дробышева, О.В. Воронкова Статистическое исследование в маркетинге: введение в экономический анализ: учебное пособие – Тамбов: Изд-во ТГТУ, 2006 9. Л.С.Хромцова. Корреляционно-регрессионный анализ основных показателей нефтедобывающей промышленности – Журнал "Экономический анализ: теория и практика", 2007, N 7. 10. Мартьянова М.Н., Сафронова Т.П. Основы статистики промышленности: Учебное пособие. – М.: Финансы и статистика, 1983 11. Гусаров В.М. Теория статистики: Учебное пособие для вузов. – М.: Аудит, ЮНИТИ, 2010 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|