Главная Рефераты по авиации и космонавтике Рефераты по административному праву Рефераты по безопасности жизнедеятельности Рефераты по арбитражному процессу Рефераты по архитектуре Рефераты по астрономии Рефераты по банковскому делу Рефераты по сексологии Рефераты по информатике программированию Рефераты по биологии Рефераты по экономике Рефераты по москвоведению Рефераты по экологии Краткое содержание произведений Рефераты по физкультуре и спорту Топики по английскому языку Рефераты по математике Рефераты по музыке Остальные рефераты Рефераты по биржевому делу Рефераты по ботанике и сельскому хозяйству Рефераты по бухгалтерскому учету и аудиту Рефераты по валютным отношениям Рефераты по ветеринарии Рефераты для военной кафедры Рефераты по географии Рефераты по геодезии Рефераты по геологии Рефераты по геополитике Рефераты по государству и праву Рефераты по гражданскому праву и процессу Рефераты по кредитованию Рефераты по естествознанию Рефераты по истории техники Рефераты по журналистике Рефераты по зоологии Рефераты по инвестициям Рефераты по информатике Исторические личности Рефераты по кибернетике Рефераты по коммуникации и связи Рефераты по косметологии Рефераты по криминалистике Рефераты по криминологии Рефераты по науке и технике Рефераты по кулинарии Рефераты по культурологии |
Реферат: Динамические структуры данных: двоичные деревьяРеферат: Динамические структуры данных: двоичные деревьяДерево — это совокупность элементов, называемых узлами (при этом один из них определен как корень), и отношений (родительский–дочерний), образующих иерархическую структуру узлов. Узлы могут являться величинами любого простого или структурированного типа, за исключением файлового. Узлы, которые не имеют ни одного последующего узла, называются листьями. В двоичном (бинарном) дереве каждый узел может быть связан не более чем двумя другими узлами. Рекурсивно двоичное дерево определяется так: двоичное дерево бывает либо пустым (не содержит ни одного узла), либо содержит узел, называемый корнем, а также два независимых поддерева — левое поддерево и правое поддерево. Двоичное дерево поиска может быть либо пустым, либо оно обладает таким свойством, что корневой элемент имеет большее значение узла, чем любой элемент в левом поддереве, и меньшее или равное, чем элементы в правом поддереве. Указанное свойство называется характеристическим свойством двоичного дерева поиска и выполняется для любого узла такого дерева, включая корень. Далее будем рассматривать только двоичные деревья поиска. Такое название двоичные деревья поиска получили по той причине, что скорость поиска в них примерно такая же, что и в отсортированных массивах: O(n) = C • log2n (в худшем случае O(n) = n). Пример. Для набора данных 9, 44, 0, –7, 10, 6, –12, 45 построить двоичное дерево поиска. Согласно определению двоичного дерева поиска число 9 помещаем в корень, все значения, меньшие его — на левое поддерево, большие или равные — на правое. В каждом поддереве очередной элемент можно рассматривать как корень и действовать по тому же алгоритму. В итоге получаем Выделим типовые операции над двоичными деревьями поиска: добавление элемента в дерево; удаление элемента из дерева; обход дерева (для печати элементов и т.д.); поиск в дереве. Поскольку определение двоичного дерева рекурсивно, то все указанные типовые операции могут быть реализованы в виде рекурсивных подпрограмм (на практике именно такой вариант чаще всего и применяется). Отметим лишь, что использование рекурсии замедляет работу программы и расходует лишнюю память при её выполнении. Пусть двоичное дерево поиска описывается следующим типом Type BT=LongInt; U = ^BinTree; BinTree = Record Inf : BT; L, R : U End; Покажем два варианта добавления элемента в дерево: итеративный и рекурсивный. {Итеративный вариант добавления элемента в дерево, Turbo Pascal} Procedure InsIteration(Var T : U; X : BT); Var vsp, A : U; Begin New(A); A^.Inf := X; A^.L:=Nil; A^.R := Nil; If T=Nil Then T:=A Else Begin vsp := T; While vsp <> Nil Do If A^.Inf < vsp^.Inf Then If vsp^.L=Nil Then Begin vsp^.L:=A; vsp:=A^.L End Else vsp:=vsp^.L Else If vsp^.R = Nil Then Begin vsp^.R := A; vsp:=A^.R End Else vsp := vsp^.R; End End; {Рекурсивный вариант добавления элемента в дерево, Turbo Pascal} Procedure InsRec(Var Tree : U; x : BT); Begin If Tree = Nil Then Begin New(Tree); Tree^.L := Nil; Tree^.R := Nil; Tree^.Inf := x End Else If x < Tree^.inf Then InsRec(Tree^.L, x) Else InsRec(Tree^.R, x) End; Аналогично на C++. typedef long BT; struct BinTree{ BT inf; BinTree *L; BinTree *R; }; /* Итеративный вариант добавления элемента в дерево, C++ */ BinTree* InsIteration(BinTree *T, BT x) { BinTree *vsp, *A; A = (BinTree *) malloc(sizeof(BinTree)); A->inf=x; A->L=0; A->R=0; if (!T) T=A; else {vsp = T; while (vsp) {if (A->inf < vsp->inf) if (!vsp->L) {vsp->L=A; vsp=A->L;} else vsp=vsp->L; else if (!vsp->R) {vsp->R=A; vsp=A->R;} else vsp=vsp->R; } } return T; } /* Рекурсивный вариант добавления элемента в дерево, C++ */ BinTree* InsRec(BinTree *Tree, BT x) { if (!Tree) {Tree = (BinTree *) malloc(sizeof(BinTree)); Tree->inf=x; Tree->L=0; Tree->R=0; } else if (x < Tree->inf) Tree->L=InsRec(Tree->L, x); else Tree->R=InsRec(Tree->R, x); return Tree; } Существует несколько способов обхода (прохождения) всех узлов дерева. Три наиболее часто используемых из них называются обход в прямом (префиксном) порядке, обход в обратном (постфиксном) порядке и обход во внутреннем порядке (или симметричный обход). Каждый из обходов реализуется с использованием рекурсии. Ниже приведены подпрограммы печати элементов дерева с использованием обхода двоичного дерева поиска в обратном порядке. {Turbo Pascal} Procedure PrintTree(T : U); begin if T <> Nil then begin PrintTree(T^.L); write(T^.inf : 6); PrintTree(T^.R) end; end; // C++ void PrintTree(BinTree *T) { if (T) {PrintTree(T->L); cout << T->inf<< " "; PrintTree(T->R);} } Реализуем функцию, возвращающую true (1), если элемент присутствует в дереве, и false (0) — в противном случае. {Turbo Pascal} function find(Tree : U; x : BT) : boolean; begin if Tree=nil then find := false else if Tree^.inf=x then Find := True else if x < Tree^.inf then Find := Find(Tree^.L, x) else Find := Find(Tree^.R, x) end; /* C++ */ int Find(BinTree *Tree, BT x) { if (!Tree) return 0; else if (Tree->inf==x) return 1; else if (x < Tree->inf) return Find(Tree->L, x); else return Find(Tree->R, x); } По сравнению с предыдущими задача удаления узла из дерева реализуется несколько сложнее. Можно выделить два случая удаления элемента x (случай отсутствия элемента в дереве является вырожденным): 1) узел, содержащий элемент x, имеет степень не более 1 (степень узла — число поддеревьев, выходящих из этого узла); 2) узел, содержащий элемент x, имеет степень 2. Случай 1 не представляет сложности. Предыдущий узел соединяется либо с единственным поддеревом удаляемого узла (если степень удаляемого узла равна 1), либо не будет иметь поддерева совсем (если степень узла равна 0). Намного сложнее, если удаляемый узел имеет два поддерева. В этом случае нужно заменить удаляемый элемент самым правым элементом из его левого поддерева. {Turbo Pascal} function Delete(Tree: U; x: BT) : U; var P, v : U; begin if (Tree=nil) then writeln('такого элемента в дереве нет!') else if x < Tree^.inf then Tree^.L := Delete(Tree^.L, x) {случай 1} else if x > Tree^.inf then Tree^.R := Delete(Tree^.R, x) {случай 1} else begin {случай 1} P := Tree; if Tree^.R=nil then Tree:=Tree^.L else if Tree^.L=nil then Tree:=Tree^.R else begin v := Tree^.L; while v^.R^.R <> nil do v:= v^.R; Tree^.inf := v^.R^.inf; P := v^.R; v^.R :=v^.R^.L; end; dispose(P); end; Delete := Tree end; {C++} BinTree * Delete(BinTree *Tree, BT x) { BinTree* P, *v; if (!Tree) cout << "такого элемента в дереве нет!" << endl; else if (x < Tree->inf) Tree->L = Delete(Tree->L, x); else if (x > Tree-> inf) Tree->R = Delete(Tree->R, x); else {P = Tree; if (!Tree->R) Tree = Tree->L; // случай 1 else if (!Tree->L) Tree = Tree->R; // случай 1 else { v = Tree->L; while (v->R->R) v = v->R; // случай 2 Tree->inf = v->R->inf; P = v->R; v->R = v->R->L; } free(P); } return Tree; } Примечание. Если элемент повторяется в дереве несколько раз, то удаляется только первое его вхождение. Список литературы Для подготовки данной работы были использованы материалы с сайта http://comp-science.narod.ru |
||
|