Главная Рефераты по авиации и космонавтике Рефераты по административному праву Рефераты по безопасности жизнедеятельности Рефераты по арбитражному процессу Рефераты по архитектуре Рефераты по астрономии Рефераты по банковскому делу Рефераты по сексологии Рефераты по информатике программированию Рефераты по биологии Рефераты по экономике Рефераты по москвоведению Рефераты по экологии Краткое содержание произведений Рефераты по физкультуре и спорту Топики по английскому языку Рефераты по математике Рефераты по музыке Остальные рефераты Рефераты по биржевому делу Рефераты по ботанике и сельскому хозяйству Рефераты по бухгалтерскому учету и аудиту Рефераты по валютным отношениям Рефераты по ветеринарии Рефераты для военной кафедры Рефераты по географии Рефераты по геодезии Рефераты по геологии Рефераты по геополитике Рефераты по государству и праву Рефераты по гражданскому праву и процессу Рефераты по кредитованию Рефераты по естествознанию Рефераты по истории техники Рефераты по журналистике Рефераты по зоологии Рефераты по инвестициям Рефераты по информатике Исторические личности Рефераты по кибернетике Рефераты по коммуникации и связи Рефераты по косметологии Рефераты по криминалистике Рефераты по криминологии Рефераты по науке и технике Рефераты по кулинарии Рефераты по культурологии |
Учебное пособие: Приложения определенного интеграла к решению некоторых задач механики и физикиУчебное пособие: Приложения определенного интеграла к решению некоторых задач механики и физикиПриложения определенного интеграла к решению некоторых задач механики и физики 1. Моменты и центры масс плоских кривых. Если дуга кривой задана уравнением y=f(x), a≤x≤b, и имеет плотность 1) =(x), то статические моменты этой дуги Mx и My относительно координатных осей Ox и Oy равны моменты инерции IХ и Iу относительно тех же осей Ох и Оу вычисляются по формулам а координаты центра масс и — по формулам где l— масса дуги, т. е. Пример 1. Найти статические моменты и моменты инерции относительно осей Ох и Оу дуги цепной линии y=chx при 0≤x≤1. 1) Всюду в задачах, где плотность не указана, предполагается, что кривая однородна и =1. ◄ Имеем: Следовательно, ► Пример 2. Найти координаты центра масс дуги окружности x=acost, y=asint, расположенной в первой четверти. ◄ Имеем: Отсюда получаем: ► В приложениях часто оказывается полезной следующая Теорема Гульдена. Площадь поверхности, образованной вращением дуги плоской кривой вокруг оси, лежащей в плоскости дуги и ее не пересекающей, равна произведению длины дуги на длину окружности, описываемой ее центром масс. Пример 3. Найти координаты центра масс полуокружности ◄Вследствие симметрии . При вращении полуокружности вокруг оси Ох получается сфера, площадь поверхности которой равна , а длина полуокружности равна па. По теореме Гульдена имеем Отсюда , т.е. центр масс C имеет координаты C. 2. Физические задачи. Некоторые применения определенного интеграла при решении физических задач иллюстрируются ниже в примерах 4—7. Пример 4. Скорость прямолинейного движения тела выражается формулой (м/с). Найти путь, пройденный телом за 5 секунд от начала движения. ◄ Так как путь, пройденный телом со скоростью (t) за отрезок времени [t1,t2], выражается интегралом то имеем: ► Пример 5. Какую работу необходимо затратить для того, чтобы тело массы m поднять с поверхности Земли, радиус которой R, на высоту /i? Чему равна работа, если тело удаляется в бесконечность? <4| Работа переменной силы / (#), действующей вдоль оси Ох на отрезке [а, Ь], выражается интегралом |
||
|